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The role of the bead-solvent interaction has been studied for its influence on the dynamics of an N-bead
macromolecule which is immersed into a solution. Using a Fokker-Planck equation for the phase-space distri-
bution function of the macromolecule, we show that all the effects of the solution can be treated entirely in
terms of the friction tensors which are assigned to each pair of interacting beads in the chain. For the
high-density as well as for the critical solvent, the properties of these tensors are discussed in detail and are
calculated by using several �realistic� choices of the bead-solvent potential. From the friction tensors, more-
over, an expression for the center-of-mass friction coefficient of a �N-bead� chain macromolecule is derived.
Numerical data for this coefficient for “truncated” Lennard-Jones bead-solvent potential are compared with
results from molecular dynamic simulations and from the phenomenological theoretical data as found in the
literature.
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I. INTRODUCTION

A better understanding of the dynamical behavior of mac-
romolecules in solutions, i.e., of their translational and rota-
tional motion, or of their �de–� formation in the shape, is still
one of the central problems in studying proteins and DNA
material. During the past few years, therefore, a large num-
ber of experiments �1–3� and molecular as well as Brownian
dynamics simulations �4–8� have been carried out in order to
describe the statical and the dynamical properties of macro-
molecules. In a first theoretical approach to this problem, the
nonrigid macromolecules are often treated in terms of—a
number of—molecular subsystems which are briefly referred
to as the beads of the macromolecule. When immersed into a
solvent, of course, the shape and the dynamical behavior of
such macromolecules will not only depend on the interaction
among the beads but will be affected also by the surrounding
particles from the solvent. In fact, the solvent can change
both the �conformational� static as well as the dynamical
properties of the macromolecules dramatically �9�. There-
fore, various models have been developed in the past for
studying the effects of the solvent on the macromolecular
properties. For instance, the most common and simple way
to take into account the solvent effects is to replace the bead-
solvent interaction by the Brownian (stochastic) forces
�10,11�. According to this approach, Rouse �12� as well as
Kirkwood and Riseman �13� developed the model of the
macromolecular behavior which has been widely used for
analyzing transport properties of the macromolecule. In the
original version of this �Rouse� model, the hydrodynamic
interaction is disregarded and the time evolution of the posi-
tion of the beads obeys the linearized Langevin equation.
The Rouse model was later extended by Zimm �14�, who
explored the various properties of the macromolecular solu-
tion in the presence of hydrodynamic interactions �Zimm
model�. The mathematical foundations of the Rouse as well

as Zimm models and their generalizations may be found in
the works of Bixon �15�, Zwanzig �16�, as well as Doi and
Edwards �10�. Unfortunately, both Rouse as well as Zimm
�phenomenological� methods are based on the assumption
that the solvent is a nondiscrete and an incompressible me-
dium �10,11,17,18�. However, the need for taking the dis-
crete �atomistic� structure of the solvent into account has
been recognized mainly due to molecular dynamic simula-
tions �MDS� �4–6,19�. Often, the discrete nature of the sol-
vent leads moreover to rather remarkable deviations from a
pure Brownian behavior of the macromolecular beads and
hence, may play an important role also in studying the dy-
namics of macromolecules.

To investigate, therefore, the question of how the solvent
particles affect the dynamics of the macromolecules in solu-
tions, Hamiltonian mechanics and master equations for the
phase-space distribution functions are commonly used,
which totally describe the dynamical behavior of macromol-
ecules �20–22�. Starting from the Hamiltonian of the overall
system “macromolecule plus solvent”, it is possible to derive
a Fokker-Planck equation �FPE� for the time evolution of the
phase-space distribution function of the molecule which con-
sists of N pairwise interacting beads. In this equation, the
dynamics of the macromolecules purely depend on the fric-
tion tensors �i.e., the right-hand sides of the FPE� which then
incorporate all the information about the interaction of the
beads with the particles of the solvent. Under the assump-
tions of a much slower relaxation of the macromolecule to
the equilibrium state �when compared to the relaxation time
of the solvent�, explicit expressions for the �“instantaneous”�
friction tensors were derived in terms of the bead-solvent
potential as well as the dynamic structure factor of the sol-
vent and were discussed, in particular, for the single bead as
well as for the �2 bead� dumbbell molecule �22,23�. Let us
note that the assumption of slow relaxation introduces a
physical framework from the beginning of the investigations.
So, these approximations generally mean, of course, that we
are interested only in the long-time �asymptotic� behavior of
the macromolecule.*Electronic address: uvarov@physik.uni-kassel.de
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In the present contribution, we now explore the effects of
the bead-solvent interaction on the dynamics of N-bead mac-
romolecules which immersed in the high-density as well as
in the critical solvent. Making use of the FPE with semiphe-
nomenological friction tensors �20–22�, detailed computa-
tions are carried out for various bead-solvent potentials in-
cluding the Yukawa, Born-Mayer, and Lennard-Jones
potential. These potentials are all well known from physical
chemistry and were used before in molecular dynamic simu-
lations in order to model the behavior of molecules and clus-
ters in different �chemical� environments �24�. In addition to
the effects of the bead-solvent interaction potentials, we in-
vestigate the contribution of the long-wave as well as the
short-wave parts of the static structure factor of the solvent
on the dynamical behavior of the macromolecule. Moreover,
by using the Einstein relation �10� in order to connect the
diffusion and friction of the macromolecule, an expression
for the center-of-mass friction coefficient is calculated and
compared with �purely numerical� results from molecular dy-
namic simulations �4,5� as well as with results, which come
from the Rouse and Zimm phenomenological theories
�7,10,11�.

The paper is organized as follows. In the next section, we
will start from the Fokker-Planck equation for the time evo-
lution of the phase-space distribution as derived previously
�22�. A particular feature of this equation is that the general-
ized friction tensor is expressed in terms of the bead-solvent
interaction as well as the dynamic structure factor of the
solvent and, hence, can be analyzed for each choice of bead-
solvent interaction independently. Various interaction poten-
tials are considered here including the Yukawa �screened
Coulomb�, Born-Mayer, and three commonly applied long-
ranging �Van der Waals-type� interactions. In addition, we
analyze the influence of various thermodynamical regimes of
the solvent on the friction of the macromolecule. Later, we
also investigate the motion of a N-bead macromolecule as
whole. A general expression for the center-of-mass friction
coefficient of the N-bead macromolecule is evaluated and
discussed. In a further section, the results from this work are
compared with available data from molecular dynamic simu-
lation and, finally, a few conclusions about our semiphenom-
enological approach are given.

II. THEORY

A. Basic equations

To analyze the dynamical properties of macromolecules in
solutions, let us suppose a microscopic view point and start
from a FPE

��N��;t�
�t

+ �
a=1

N
Pa

M

��N��;t�
�Ra

− �
a,b=1

N
�Uab

�Ra

��N��;t�
�Pa

= �
a,b=1

N
�

�Pa
��ab�� �

�Pb
+

1

kBTM
Pb��N��;t� �1�

as recently derived for the time evolution of the phase-space

distribution function �N�� ; t� for the N-bead macromolecule.
In Refs. �20,22�, Eq. �1� was obtained by starting from the
Hamiltonian of the overall system macromolecule plus sol-
vent where, for the sake of simplicity, an equal mass M and
pairwise interaction Uab=U��Ra−Rb � � were assumed for all
the beads of a macromolecule. In addition, it was supposed
the relaxation from a nonequilibrium into the equilibrium
state of the macromolecule to be a slow process when com-
pared to the relaxation of the solvent particles.

Let us note that an alternative way to study the behavior
of the macromolecule in solutions is to use the �so-called�
generalized Langevin equation �GLE� with time-dependent
�dissipative� friction memory kernel and random fluctuating
force �17�. Mathematically, both the FPE and GLE methods
are equivalent if we take into account the assumption about
slow relaxation of the macromolecule. In the frame of this
assumption the friction memory kernel reduces to the friction
tensors and a � function in time �10,11,17�.

In Equation �1�, Ra and Pa, a=1, . . . ,N denote the posi-
tions or, respectively, the momenta of the individual beads,
while we will use �	
R1 , . . . ,RN ;P1 , . . . ,PN� below in or-
der to abbreviate the phase-space coordinates alltogether. For
each pair �a ,b� of beads, a friction tensor ��ab� is associated
also which characterizes the �thermodynamically averaged�
interaction of these two beads with the surrounding particles
from the solvent. Finally, kB denotes the Boltzmann constant
and T the temperature of the overall system macromolecule
plus solvent.

As said before, the FPE �1� describes the time evolution
of the phase-space distribution �N�� ; t� and, hence, includes
all the information about the dynamics of the N-bead mac-
romolecule in solution. From this �probability density� func-
tion, in fact, the probability to find the macromolecule at
time t within a small volume d� around the point � in phase
space is simply given by �N�� ; t�d�. For this to be right, of
course, the distribution function should be normalized,

� d� �N��;t� = 1, �2�

by taking the integral over the complete phase-space of the
macromolecule. In practice, the knowledge of the phase-
space distribution �or, at least, of some of its properties�
plays a key role in studying the dynamical behavior of mol-
ecules in solution. As discussed previously in the literature
�10,11,17,25�, this distribution function helps calculate, for
instance, the translational as well as rotational properties of
macromolecules. Moreover, knowing once the phase-space
distribution �N�� ; t� of a macromolecule, the time average  �
of any function A	A�
��� can be easily derived from the
integral

A� =� d� A����N��;t� . �3�

Equation �1� however merely defines the framework for
studying the dynamics of large and slow molecules in solu-
tion; in order to make use of this frame, we first need to
analyze the friction tensors ��ab� for the various—neighbored
pairs of—beads which incorporate all of the information of
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how the solvent particles affect their motion. The knowledge
of �the properties of� these tensors may then help to under-
stand the dynamical properties of the macromolecules such
as the relaxation time from a nonequilibrium into the equi-
librium state of the macromolecule or the velocity autocor-
relation function �22�. Additionally, the friction tensors ��ab�

can be used also to calculate the hydrodynamic force Fhydr,a

on some given bead a owing to the summation over all the
beads

Fhydr,a = − �
b=1

N

��ab�Pb/M , �4�

where Pb /M is the velocity of the bead b. In the following,
we will therefore discuss the friction tensors of the N-bead
macromolecule in more detail.

Together with Eq. �1�, an explicit expression for the “in-
stantaneous” friction tensor, whose off-diagonal elements de-
scribe the hydrodynamic interaction between beads a and b,
is also known and can be written in terms of “measurable”
parameters of the solvent as Ref. �22,26�

��ab� = n0��
0

�

d�� dk

�2��3k � kW�k�2eik·Rae−ik·Rbg�k,���
�5�

if we assume a spherical-symmetric bead-solvent potential
W��Ra−rs � �, i.e., an interaction term in the Hamiltonian for
each pair of bead a and solvent particle s. In this expression,
n0 refers to the number density �or concentration� of the sol-
vent particles, while W�k�=�dr e−k·rW�r� denotes the Fou-
rier transform of the bead-solvent potential in which k being
the wave vector with the modulus k= �k� and with the carte-
sian components k� ��=1,2 ,3�. In addition, here we use the
operation � to denote a tensor �dyadic� product which turns
two vectors into a second-rank tensor. Moreover, g�k ,�� is
often better known as the dynamic structure factor �scattering
function� of the solvent �10,11�. We shall return later to this
factor and discuss its properties in detail. For the moment,
we just mention that this dynamic structure factor contains,
in fact, all the information about the properties of the solvent
including, for example, its relaxation time back into the equi-
librium, temperature, viscosity, and many further properties
�27–29�.

As said above, the generalized friction tensor ��ab� con-
tains, in fact, all information about influence of the solvent
on the macromolecular behavior. In practice, however, it ap-
pears rather infeasible to deal with the coupling between
phase-space coordinates of the beads �position and momenta�
and dynamic structure factor of the solvent �cf. Eq. �5� and
note that eikRa�0�e−ikRb���=eikRa�0�e−ikRb�0�e−ikPb�0��/M�. Since
the macromolecules as a whole usually have a much larger
mass and size than the particles of the solvent, we may use
instead a very good approximation for the momentum distri-
bution in order to simplify the generalized friction tensors �5�
to the reduced �momenta everaged� friction tensor �̂�ab�

which is averaged over the local momenta and just depends
on the coordinates of the beads. For most solutions, namely,
we may assume that the relaxation to the equilibrium �val-

ues� happens much faster for the momenta of the molecular
beads rather than for their positions and, hence, that the
phase-space distribution function �N�� ; t� can be factorized

�N��;t� = �N�
Ra�;t� · pN�
Pa�;t� �6�

into a coordinate-space distribution �N�
Ra� ; t� and the
momentum-space distribution function pN�
Pa� ; t�. By mak-
ing use this factorization �6� we now may obtain the reduced

friction tensors �̂�ab� by taking the average

¯�P 	
� d
Pb� . . . pN�
Pb�;t�

�� d
Pb�pN�
Pb�;t�� �7�

over the momenta with respect to the momentum-space dis-
tribution function pN�
Pa� ; t�. Let us note that the
momentum-space distribution function may be assumed both
equilibrium as well as not equilibrium. In fact, in order to the
include all nonequilibrium effects, we need to use the non-
equilibrium momentum-space distribution function. How-
ever, as a first approximation, we restrict ourselves to the
Maxwellian equilibrium momentum-space distribution func-
tion �10,11� in order to derive the momentum averaged fric-
tion tensor of the macromolecule immersed in the solvent.
Let us note only, that in order to further understand the be-
havior of the macromolecule and quantitavely obtain the
contribution of the deviation of the momentum-space distri-
bution of the macromolecular beads from the Maxwellian
distribution, we can use the nonequilibrium momentum-
space distribution function which was derived, for instance,
in Ref. �20�. In the late case the calculated friction tensors
will describe the behavior of the macromolecule on the
short-time or even ballistic time scales �7,10,11� when a
macromolecule is far from the equilibrium. Actually, we will
perform this work in the next few monthes.

By taking the average �7� to the general friction tensor
�5�, we derive the reduced �momenta averaged� friction ten-
sors

�̂�ab� 	 ��ab��P = n0��
0

�

d�� dk

�2��3k

� kW�k�2eik·Rae−ik·RbC�k,��g�k,��� �8�

in which the function C�k ,��= e−ik·Pb�/M�P is nothing else
but the inertial part of the self-structure factor of the bead.
Moreover, in view of the assumption that the momentum-
space distribution function is equilibrium one, the self-
structure factor C�k ,�� of the bead can be evaluated analyti-
cally: �10,11�

C�k,�� = exp�−
kBT

2M
k2�2� . �9�

As seen from expression �8�, the friction tensors �̂��
�ab� are

symmetric in the cartesian indices � and � and of rank 2 in
the wave vector and, thus, may have just six independent
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components. Furthermore, since these components only now
depend on the positions of the two beads, these tensors can
always be parametrized in terms of two parameters
�10,11,22�

�̂�ab� = A�	ab�I + B�	ab�q�ab�
� q�ab� �10�

with I being the 3
3 unit tensor. In the expression �10�,
	ab= �Ra−Rb� is the distance between the beads a and b and
q�ab�=Ra−Rb /	ab denotes a unit vector which points from
bead b to bead a. From a physical view point, of course, this
means that the reduced friction tensors merely depend on the
relative orientation but not on the relative motion of the
beads. As shown in the Appendix, the friction parameters can
always be recast into the form

A�	ab�

=
2n0

�2��2��
0

�

d��
0

�

dk k4W�k�2C�k,��g�k,��
j1�k	ab�

k	ab
�

B�	ab� =
2n0

�2��2��
0

�

d��
0

�

dk k4W�k�2C�k,��g�k,��


�� j0�k	ab� −
3

k	ab
j1�k	ab���� , �11�

where j0�x�=sin x /x and j1�x�= �sin x−x cos x� /x2 denote the
spherical Bessel functions of zero and first rank �30�, respec-
tively. In order to understand that these parameters still con-
tain the information about the solvent, we may consider, for
example, the case of a spherical single-bead molecule
�N=1�, for which the influence of the isotropic solvent
should not depend on the direction of the motion and, hence,
the friction tensor

�̂��
aa = �0I , �12�

is expected to be a function of just a single parameter, called
the self-friction coefficient of the molecule. Using the ex-
pressions �11� and �12� for the case a=b, we than find that
the contribution of the second term of the friction tensor �5�
with B�	aa=0� is always zero. In contrast, the first contribu-
tion with A�	aa=0� simply becomes a constant

�0 =
2n0

3�2��2�
0

�

dk k4W�k�2��
0

�

d� C�k,��g�k,��� ,

�13�

and was exploited recently in order to calculate the diffusion
and boundary condition coefficients of the single-bead
spherical heavy molecule immersed in a solvent �23�.

Having the expressions �11� and �12� for the friction pa-
rameters of the N-bead macromolecule, we see that the in-
fluence of the solvent is entirely determined by the bead-
solvent interaction potential W as well as by the dynamic
structure factor of the solvent g�k ,��, which contains all the
information about the properties of the solvent �such as tem-
perature, viscosity, etc.�. In the past years, therefore, studies
of the dynamic structure factor attracted a lot of interest

�27–29�. If, in addition, we assume the dynamical behaviour
of the solvent to be determined by a diffusion equation, vari-
ous expressions have been derived for the time-dependence
of the dynamic structure factor of the solvent. For example,
if we neglect the correlation between the solvent particles
�i.e., for a noncorrelated solvent�, the dynamic structure fac-
tor can be approximated by the simple analytical expression

g�k,�� = g�k� exp�− k2DB�� . �14�

which—via the static structure factor g�k� and the self-
diffusion coefficient of the solvent particle DB—still contains
the knowledge about the time-independent properties of the
solvent �i.e., density fluctuations, correlation length, tem-
perature, viscosity, etc.�. Let us note here that, from a physi-
cal viewpoint, the omission of the correlation between the
solvent particles is justified only for a low-density solvent.
Apart from expression �14�, another form of the dynamic
structure factor for medium- and high-density solvents

g�k,�� = g�k� exp�− k2DB�/g�k�� . �15�

was derived from Smoluchowski-Vlasov equation �28� with-
out that the correlation between the solvent particles was
neglected. Instead, this Smoluchowski-Vlasov expression
�15� was derived from a �so-called� modified version of the
diffusion equation, in which the static correlation between
the solvent particles is incorporated by means of a mean-
force potential. As confirmed in molecular dynamics simula-
tions �27,28�, the Smoluchowski-Vlasov expression �15� de-
scribes the dynamic structure factor g�k ,�� well as all
medium densities while it sometimes fails for high densities.
In the latter case, the dynamic structure factor is better de-
scribed by the Rayleigh-Brillouin expression �26,28,29�

g�k,�� = g�k���1 −
1

�
�e−k2DT� +

1

�
cos�csk��e−k2��� ,

�16�

where the solvent is treated as a viscoelastic continuum with
the shear viscosity  and where, in contrast to the expres-
sions �14� and �15�, the �time-independent� properties of the
solvent are characterized by the thermal diffusivity DT, the
ratio � for the specific heat of the solvent, adiabatic sound
velocity cs=��kBT /mg�0� as well as by means of the con-
stant � for attenuation of sound which in turn is given by
�= 1

2 �DT��−1�+2 /n0m� �26�. Together, the three expres-
sions �14�–�16� for the dynamic structure factor g�k ,�� de-
scribe the properties of the solvent at all density regimes,
and, therefore, can be used to analyze the dynamical proper-
ties of the macromolecules immersed in the solvent. In our
discussion below, however, we restrict ourselves to the
Rayleigh–Brillouin expression �16� which, in addition to the
high-density solvent, is also often used to describe the sol-
vent properties near the �so-called� critical point �CP� of the
solvent �26,29�, i.e., when the temperature T and number
density n0 are around the critical values Tcp and n0cp

, respec-
tively. For this critical region, moreover, the time integral
over the dynamic structure factor of the solvent and self-
structure factor of the bead can be evaluate analytically
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��k� = �
0

�

d� g�k,��C�k,��

=
g�k�

k
� �M

2kBT
ek2DT

2 M/2kBT�1 − erf�� M

2kBT
kDT��

�17�

by using the fact that the specific heat ratio 1 /� becomes
negligible near the critical point. In this expression �17�, erf
denotes the error function which, for the variable x, is de-
fined by

erf�x� =
2

��
�

0

x

dy e−y2
. �18�

By using the expression �17� for the time integral, we are
able now to bring the two friction tensor parameters A�	ab�
and B�	ab� as well as single-bead friction coefficients into
the form �cf. Appendix for details�

A�	ab� =
2n0

�2��2�
0

�

dk k2W�k�2��k�
j1�k	ab�
�k	ab�

, �19�

B�	ab� =
2n0

�2��2�
0

�

dk k2W�k�2��k�


� j0�k	ab� −
3

�k	ab�
j1�k	ab�� , �20�

�0 =
2n0

3�2��2

1

DT
�

0

�

dk k2W�k�2��k� . �21�

For sufficiently slow relaxation of the beads (when com-
pared to the relaxation of the solvent particles�, the tensor
parameters �11� and �12� �for critical points �19�–�21�, re-
spectively�) still describe all the effects on the dynamics of
the macromolecules which are caused by the solvent. In the
following subsection, therefore, we make use of this form
and of expression �16� in order to analyze the friction tensor
parameters of the N-bead macromolecules for various com-
mon choices of the bead-solvent potential as well as for vari-
ous choices of the solvent properties.

B. Behavior of the friction tensor parameters of the N-bead
macromolecule

As seen from the explicit expressions �11� and �12�, the
friction parameters A�	ab� and B�	ab� of the macromolecule
immersed into a solvent also depend on the static structure
factor g�k�, in addition to the bead-solvent potentials W. In-
stead of this static structure factor, that contains the informa-
tion about the time-independent properties of the solvent,
however, one often uses the pair correlation function �PCF�

g�r� =
��r���0��

��2 , �22�

to describe the properties of a solvent with the local density
��r�=�s=1

n ��rs−r�. In practice, of course, either the PCF or

the statical structure factor can be used alternatively due to
the well-known relation �11�

g�k� = 1 + 4�n0�
0

�

dr�g�r� − 1�j0�kr� . �23�

To obtain further insight into the behavior of macromol-
ecules in solutions, a Lennard-Jones solvent is often used for
which the interaction among the solvent particles is modeled
by a truncated Lennard-Jones �LJ� potential

V�r� = �4�B���

r
�12

− ��

r
�6

+ v0�, if r � rB

0, otherwise

. �24�

In this potential, � is the diameter of the solvent particles,
v0 is a constant, �B is the interaction strength, and rB denotes
the cut-off radius beyond of which the potential becomes
zero. In order to illuminate the role of the various thermody-
namical regimes of the solvent on the behavior of the mac-
romolecule we will consider the solvent at the critical point
as well as the high-density solvent which is far from critical-
ity. For the critical LJ solvent we will take the constant
v0=0 and the cut-off radius rB=3.5. Moreover, we will use
the temperature kBTcp�1.2�B, the number density
n0cp

�0.30/�3 �28,36�, as well as the static structure factor
which was taken from MDS �27�. For the high-density sol-
vent which is far from criticality, in contrast, we will use the
same thermodynamic properties as applied recently in the
MD simulation by Dünweg and Kremer in Ref. �4� where the
number density n0�3�0.86, the temperature kBT�1.2�B,
and the constant v0=0.25 as well as the cut-off radius
rB=�62�.

These authors also displayed the PCF g�r� of the high-
density solvent, which was utilized in order to calculate the
statical structure factor g�k� by means of Eq. �23�. Both func-
tions are displayed in Fig. 1 and show that the structure
factor can be divided into two parts. While for large values
of modulus of the wave vector k�20� �so-called short-wave
part�, the static structure factor is almost constant, g�k��1, it
has large oscillations for the smaller values of k �long-wave
part� due to the fact that dense solvent is a highly correlated
system.

Let us now return to the friction parameters A�	ab� and
B�	ab� which, apart from the static structure factor, depend,
of course, on the interaction potential W between the solvent
particles and the beads of the macromolecule. To understand
their influence onto the internal dynamics of the macromol-
ecule, a number of bead-solvent interaction potentials have
been selected and utilized below in simulations. In the fol-
lowing, therefore, to model the influence of the solvent on
the internal dynamics of macromolecules, a number of bead-
solvent interaction potentials W have been suggested and uti-
lized in simulations.

Most of these potentials were applied before in physical
chemistry to simulate the various �chemical� environments
�24�. For further analysis of how these environments may
affect the dynamics of a N-bead macromolecule, we consider
below the friction tensor parameters �19� and �20� for the
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following bead-solvent potentials: �i� Yukawa �screened
Coulomb� potential �31�, �ii� Born-Mayer potential �32� as
well as for the three Van der Waals–type interactions as given
by �iii� the Lennard-Jones potential �10,11�, �iv� a short-
range attractive approach to the Van der Waals interaction,
�33� and �v� its Gaussian decomposition �34,35�. For these
particular choices of the bead-solvent interaction �sf. Fig. 2�,
we will discuss the corresponding friction tensor parameters
and the maximal “effective” distance between the beads up
to which the hydrodynamic interaction cannot be neglected.
A Yukawa �Y� potential is supposed to be appropriate in
order to describe the repulsive interaction between charged
particles, i.e., if—owing to the presence of the macromol-
ecule in the solvent. This potential is given by

WY�r� = �
e−r/�

r/�
, �25�

where � is called the interaction strength and � the decay �or
Debye� length which characterizes these screening of the
Coulomb repulsion. For dilute solutions, in contrast, the
Born-Mayer �BM� potential

WBM�r� = �e−r/� �26�

is often taken to be more suitable, which is still repulsive but
at a lower rate for r→0 �cf. Fig. 2�a��. Making the Fourier
transform of the bead-solvent potentials, we are now able to
calculate immediately the friction tensor parameters A�	ab�
and B�	ab� of the macromolecule by using the expressions
�11� and �12� as well as the static structure factor g�k� of the
high-density solvent as obtained in Fig. 1. Lets us note that,
in our calculations, we consider the case when the bead mass
is only twice more than the mass of solvent particle, i.e.,
M =2m.

Figure 3 displays the dependence of the �normalized� pa-
rameters of the friction tensor A�	ab� /�0 and B�	ab� /�0 as a
function of �dimensionless� variable 	ab /�, measuring the
distance between the beads in terms of the characteristic de-
cay length of the potential. A rather different behavior of the
friction tensor parameters occurs for the two interaction po-
tentials. While, for a Yukawa potential, the beads do not
affect each other anymore for a distance of, say 6�, they will
interact at this or even larger distances in the case of a Born-
Mayer potential.

Apart from the dependence on the bead-solvent potential,
Fig. 3 also demonstrates that the friction parameters depend
rather strongly on the oscillating nature of the static structure
for the k�20� of the solvent. As seen from Fig. 3, the os-
cillating of g�k� for small values of k leads to the qualitative
different behavior �sf. Fig. 3�a�� than obtained in the CP
region of the solvent where oscillating of g�k� is not so large
�sf. Fig. 3�b�� as well as the high-frequency approximations
of the static structure factor where g�k�=1 is assumed con-
stant ��Fig. 3�c���.

FIG. 1. Wave-vector dependence of the static �equilibrium�
structure factor g�k� of the solvent. The static �equilibrium� struc-
ture factor was obtained from expression �23� by using the MDS
data from Ref. �4� for the pair correlation function. See text for
further discussion.

FIG. 2. �Color online� Different bead-solvent potentials to describe the influence of the solvent particles on the dynamics of the
macromolecules. �a� Yukawa �25� and Born-Mayer potential �26� and �b� three commonly applied bead-solvent potentials �27�–�29� to model
the long-range Van der Waals interaction; see text for further discussion.
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Apart from a purely repulsive interaction �as discussed
above�, the interaction between the molecular beads and the
particles from the solvent is often modeled also by some
long-ranging Van der Waals interaction. This interaction usu-
ally combines a strong repulsive part of the potential at small
distances with a �weak� attractive part for a large separation
of the solvent particles from the beads. Owing in particular
to their frequent use in MDS, below we distinguish three
cases of such Van der Waals-type interactions including the
Lennard-Jones �LJ� potential �10,11�

WLJ�r� = 4����

r
�12

− ��

r
�6� , �27�

the short-range attractive �SR� or so-called SHRAT potential
�33�

WSR�r� = �
512

27
��1 −

�

r
��3 − 2

�

r
�3

, if r �
3

2
�

0, if r �
3

2
� .

�28�

as well as a Gaussian decomposition �GD� of the Van der
Waals interaction �34,35� �see Fig. 1�b��:

WGD�r� = ��
i=1

4

aie
−bi/2�r/��2

. �29�

In all these potentials, the constants � and � determine
again the characteristic strength and decay length of the po-
tential. For the Gaussian decomposition of the Lennard-
Jones potential, the parameters ai and bi are listed in Table I.

Besides the commonly applied Lennard-Jones potential,
the short-range approximation and Gaussian decomposition
of the Van der Waals interaction were mainly introduced with
the aim to facilitate the numerical computations in the MDS
simulations. Figure 4 displays the �normalized� friction ten-
sor parameters A�	ab� /�0 and B�	ab� /�0 for the Lennard-
Jones, the short-range, and the Gaussian decomposition
�bead-solvent� potentials as a function of the separation 	ab
between the beads a and b. They have been determined nu-
merically along a one-dimensional grid for the bead-solvent
potentials �27� and �29�.

From Fig. 4, we again see that the tensor parameters
A�	ab� /�0 and B�	ab� /�0 appear very sensitive to the explicit
form of the bead-solvent potential as well as to the long-
wave part of the static structure factor g�k� of the solvent.
When compared with the parameters from the Yukawa and
Born-Mayer potentials �cf. Fig. 2�, moreover, A�	ab� decays
rapidly to zero within about 1.5� for any of the three Van der
Waals–type interactions while, for the Yukawa and Born-
Mayer potentials, a nonvanishing friction force occurs up to
about 5� or even 10�. Let us note, moreover, that when we
assumed the short-wave approximation for the statical struc-
ture factor �g�k�=1� only, we can evaluate the expressions
�19� and �20� for the friction tensors analytically for the most
part of the bead-solvent potential. For the sake of brevity,
however, here we omit all the details of this computation.
Finally, by comparing Figs. 1�b� and 3, we see that only the
repulsive part of the interaction is generally responsible for
the behavior of the friction tensor parameters.

The friction tensor is one of the key ingredients for study-
ing the dynamical properties of macromolecules in solutions.
It affects not only the relaxation time �in order to return back
from a nonequilibrium into the equilibrium state� or the ve-
locity autocorrelation function of the macromolecule but also
its end-to-end vector and radius of gyration.�18,22� In addi-
tion to the internal properties of the macromolecular behav-
ior the friction tensors also effects on the dynamical behavior
of the macromolecule as a whole are discussed. In the next
section, therefore, we make use of the friction tensor in Eq.
�5� in order to derive the center-of-mass �cm� friction coef-
ficient of a N-bead macromolecule. Information about this
coefficient will later help us understand the motion of the

TABLE I. Parameters for the Gaussian decomposition �GD� of
the Van der Waals interaction owing to Eq. �29�.

a1=846706.7 b1=30.92881

a2=2713.651 b2=14.96375

a3=−0.7154420 b3=1.279242

a4=−9.699172 b4=3.700745

FIG. 3. �Color online� Normalized friction tensor parameters A /�0 and B /�0 as function of the bead-bead distance 	ab; �cf. Eqs. �11� and
�12��. They are shown for a Y and BM bead-solvent potential. These friction parameters are shown for three cases: �a� the long-wave part
�k→0� of the statical structure factor of the high-density solvent g�k� was taken into account �see Fig. 1�; �b� the same as �a� but for the
solvent at the critical point; �c� only short-wave parts �k�0� of the statical structure factor of the high-density solvent ��g�k�=1�� was taken
into account. See text for further discussion.
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macromolecule as a whole within the solvent.

III. CENTER-OF-MASS FRICTION COEFFICIENT OF
THE N-BEAD MACROMOLECULE

Since, in the following, we are only interested in the dy-
namics of the macromolecule as a whole, let us return to the
Fokker-Planck equation �1� for the phase-space distribution
function for the macromolecule and start with separating the
cm and the internal �Q� motion of the macromolecule from
each other. Instead of the cartesian coordinates Ra, Pa,
a=1, . . . ,N of the individual beads, or course, we then make
better use of the center-of-mass and the relative coordinates.
For N beads of equal mass, the center-of-mass coordinates
are given by

Rcm =
1

N
�
a=1

N

Ra, Pcm =
1

N
�
a=1

N

Pa �30�

while we will use

Qa = Ra − Ra+1, PQa
= Pa − Pa+1, �31�

for the remaining 2�N−1� relative coordinates, assuming the
N beads form a chain. In addition, if the internal dynamics of
the macromolecule does not depend on its particular position
within the solution, we may suppose that the phase-space
distribution function �N�� ; t� of the N-bead macromolecule
factorizes �once more� into

�N��;t� = ��Rcm,Pcm;t���
Qa,PQa
�;t� , �32�

where ��Rcm,Pcm; t� is the distribution function of the
center-of-mass coordinate and ��
Qa ,PQa

� ; t� the phase-
space distribution of the internal motion, sometimes briefly
refereed to as the configuration-space distribution function
�again� of the macromolecule. In line with Eq. �2�, both of
these distribution functions are taken to be normalized

� dRcmdPcm��Rcm,Pcm;t� = 1 �33�

and

� d
Qa,PQa
���
Qa,PQa

�;t� = 1, �34�

respectively.

With the separation �32� for �N�� ; t� at hand, it can be
shown that the center-of-mass distribution function
��Rcm,Pcm ; t� obeys a Fokker-Planck Equation similar to
Eq. �1� above. Inserting �32� into �1� and by making use of
the chain rule for a few times, we then find that the cm
distribution function �	��Rcm,Pcm; t� fulfills the equation

��

�t
+

Pcm

M

��

�Rcm
=

1

N

�

�P�cm�
�N

cm� 1

N

�

�Pcm
+

1

kBTM
Pcm��

�35�

which we call the Fokker-Planck equation for the center-of-
mass motion of the macromolecule below. On the right-hand
side of this equation,

�N
�cm� = � �

a,b=1

N
1

3
Tr���ab���� �36�

denotes the center-of-mass friction coefficient for the corre-
sponding �cm� motion of the molecule, including the trace

over the friction tensor �5�, Tr��̂�ab��, and by taking the aver-
age

. . .� 	
� d
PQa

,Qa� . . . ��
PQa
,Qa�;t�

�� d
PQa
,Qa���
PQa

,Qa�;t�� �37�

over all the internal coordinates. Of course, we may now
combine the general form �36� with the previously derived
expressions �5� for the instantaneous friction tensor in order
to obtain an expression for the cm friction coefficient of the
N-bead macromolecule

�N
�cm� =

n0

3 ��0

�

d�� dk

�2��3k2W�k�2


� �
a,b=1

N

eik·Rae−ik·Rb�g�k,��� . �38�

As seen from expression �38�, the cm friction coefficient
fully describes—via the dynamic structure factor g�k ,�� and
the bead-solvent potential W—the influence of the solvent on
the center-of-mass motion of the macromolecule. Moreover,
the cm friction coefficient implicitly also depends—owing to

FIG. 4. �Color online� The same as in Fig. 2 but here displayed for the Lennard-Jones �LJ�, the short-range approach �SR�, and for a
Gaussian decomposition �GD� of the bead-solvent potential. See text for further discussion.
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the average �37� over the internal coordinates of the
macromolecule—on the bead-bead potential U and can be
used in order to further study the macromolecular properties
as a whole.

A further simplification of the cm friction coefficient �N
�cm�

in expression �38� is obtained, moreover, from the observa-
tion that the expression �a,b=1

N eik·Rae−ik·Rb� is nothing else
but the (dynamic) structure factor of the N-bead macromol-
ecule �4,10,11�

SN�k,�� =
1

N� �
a,b=1

N

eik·Rae−ik·Rb���� . �39�

Therefore, by combining the expressions �38� and �39�, we
finally obtain the center-of-mass friction coefficient of the
larger N-bead macromolecule

�N
�cm� =

n0

3
N�

0

� dk

�2��3��
0

�

d� k2W�k�2SN�k,��g�k,���
�40�

in terms of the measurable parameters of the system “mac-
romolecule plus solvent.” As seen from the expression �40�,
the center-of-mass friction coefficient depends on both, the
structure factor describing both the geometrical configuration
as well as dynamical properties of the macromolecule and
the dynamic structure factor which contain all the informa-
tion about the solvent. This is the key result of the present
section since the knowledge of the center-of-mass friction
coefficient therefore plays quite a central role for understand-
ing the motion of macromolecules in solution. Instead of the
cm friction coefficient, however, it is often more convenient
to use the center-of-mass diffusion coefficient of the macro-
molecule which are related to each other by

DN
�cm� = kBT/�N

�cm�. �41�

In the next section, we will use this relation �41� for calcu-
lating the center-of-mass diffusion coefficient of the macro-
molecule as a function of the number of beads, N, and for
comparing its behavior with results as obtained from
molecular-dynamics simulations.�4,5�

IV. COMPARISON WITH RESULTS FROM MDS

Recently, a number of dynamic simulations �DS�, such as
Brownian DS, molecular DS, etc. have been carried out for
studying the dynamical properties of macromolecules in
solution.�4–8,24� In these case studies, the main emphasis
was placed on the translational center-of-mass diffusion co-
efficient, dynamic and statical structure factors as well as the
velocity autocorrelation function of the macromolecule in the
solvent. These numerical investigations are, however, useful
for comparison as shown in Fig. 4 for the center-of-mass
diffusion coefficient of the macromolecule. Results from our
semiphenomenological computations are compared with
MDS data by Dünweg and Kremer �4� and Ahrichs and Dün-
weg �5� as well as with calculations from the Rouse phenom-
enological theory �10,11�, respectively. In addition, we also
compared our computations with two calculations from the

Zimm phenomenological theory as found in the literature.
These calculations differed, however, with respect to their
description of the hydrodynamic interaction, with “preaver-
aging” �10,11� and “fluctuating” �nonpre-averaging� �7� hy-
drodynamic interactions, respectively. In these computations,
the molecules were modeled by a N-bead polymer spring
with a finitely expandable nonlinear elastic �FENE� potential
�18� among the neighboring beads, while a “truncated”
Lennard-Jones potential

WLJ�r� = �4����

r
�12

− ��

r
�6

+
1

4
�, if r � 2

1
6�

0 otherwise,

�42�

was taken for their interaction with the solvent particles �sol-
vent plus macromolecule�.

In the MD simulations of Refs. �4,5� the solvent was mod-
eled by hard-sphere particles with a number density
n0�3=0.86 and taken from a temperature kBT=1.2�S. This
refers to the rather high density and, hence, the �so-called�
exclude volume interaction is considered to be
screened.�4,5,37� For the same reason, we can assume that
the time-independent �static� properties of the macromolecu-
lar chain can be described—at least as the first step—by the
Gaussian form of the internal phase-space distribution func-
tion ��
PQa

,Qa� ; t� �so-called Gaussian approximation�.�38�
Of course, in such a Gaussian chain the bead-bead potential
is simply given by �10,11�

U =
3kBT

2b2 �
a=1

N−1

Qa
2, �43�

where b2= Qa
2� denotes the mean square bond length. As

expected from previous experience �25,37�, moreover, only
small differences appear for the properties of the macromol-
ecule if modeled in terms of a FENE or HOOKEAN �43� bead-
bead potential. From a physical view point, of course, the
Gaussian approximation is of particular interest for the mac-
romolecules behavior near the �-point,�11� where the ex-
cluded volume interaction is totally screened. The same
method for calculating the friction tensor, however, can be
used to describe macromolecules in those solutions which
are fairly away from the �-point and for which the macro-
molecule is either in a collapsed state �bad solvent� or given
a dilute chain �good solvent�.

The center-of-mass friction coefficient �̂N
�cm� from expres-

sion �40� still depends on the dynamic structure factor of the
macromolecule. For its further simplification, we may there-
fore use the approximate form of the dynamic structure fac-
tor for a macromolecular chain

SN�k,�� = SN�k�e−k2�/�0N �44�

which is expected to provide a fairly sensible description of
the dynamic structure factor �10,11�. In this expression �44�,
SN�k� is used to denote the static structure factor of the
N-bead macromolecule. Following �10�, we use use the De-
bye’s form of the statical structure factor

FRICTION OF N-BEAD MACROMOLECULES IN… PHYSICAL REVIEW E 73, 011111 �2006�

011111-9



SN�k� =
N

1 + 1
2k2RN

G �45�

which characterizes the quantity of the scattering intensity of
the N-bead macromolecules in the regime k� l−1 �l being a
microscopic length of the order of a bondlength�. In expres-
sion �45�, moreover, we use RN

G in order to denote the radius
of gyration on the N-bead macromolecule, i.e.,
RN

G=�a,b=1
N �Ra−Rb�2� / �2N2�. From previous numerical

MDS investigations,�4� a fit formula for the radius of the
gyration of the N-bead macromolecule immersed in the sol-
vent

RN
G = 0.54�N − 1�0.53 �46�

were determined rather accurately. Inserting the expressions
�9� and �16� as well as �40� and �46� into �41� and using the
data �cf. Fig. 1� for the static structure factor g�k� of the
solvent, we may calculate directly the self-diffusion coeffi-
cient D0 of the bead of macromolecule as well as the center-
of-mass diffusion coefficients for a given number N=30, 40,
or 60 beads. Figure 5 shows the normalized cm diffusion
coefficient DN

�cm� /D0 as function of N and in comparison with
the available MDS data �4,5� as well as with the phenomeno-
logical theory data.�10,11� Good agreement is found, in par-
ticular, with the simulations by Dünweg and Kremer �4� for
N=40 as well as N=60 and with some deviation only at
N=30. In addition, as seen from the Fig. 5, the data, which
was calculated from the Rouse phenomenological theory, are
always smaller and can give only the qualitative information
about the behavior of the cm diffusion coefficient for the
N-bead macromolecule. While, moreover, the Zimm model
with “preaveraging” hydrodynamic interactions predicts the
result which is also far from the MDS data, the Zimm model

with “fluctuating” hydrodynamic interactions �Brownian DS
data� can give the quantitative information about the behav-
ior of the cm diffusion coefficient for the N-bead macromol-
ecule but only if the number of the beads �110. It demon-
strates that the semiphenomenological methods help
understand and calculate the friction and further properties
sometimes without that extensive molecular DS studies be-
come necessary.

V. CONCLUSIONS

The influence of the bead-solvent interaction on the dy-
namics of macromolecules, that are immersed into a solu-
tion, has been investigated in detail by starting from a
Fokker-Planck equation for their phase-space distribution
function. In this picture, the macromolecules is taken as a set
of beads which are coupled to each other by some pairwise
potential and surrounded by—a large number of—solvent
particles. There are two realistic assumptions which were
made in our investigations: Since �i� the mass of the mol-
ecule as a whole is considered to be much larger than the
mass of the solvent particles, we may assume �ii� that the
relaxation of the solvent also proceeds much faster in time
than when compared to the macromolecules. These two as-
sumptions are made very frequently in studying the behavior
of macromolecules in solutions.�10,11,18,22,25�

For the two basic assumptions from above, the dynamics
of the macromolecule is determined purely by the “friction
tensors” that appear on the right-hand side of the FPE and
which can be expressed in terms of the bead-solvent interac-
tion potential as well as the dynamic structure factor of the
solvent. Using the explicit expression, as obtained earlier for
the friction tensors of the molecule in solution, we then show
that the behavior of the friction tensor parameters depend on
the distance between the beads as well as on the thermody-
namic regime of the solvent. Computation has been carried
out for the five cases of �i� a Yukawa, �ii� the Born-Mayer,
and �iii�-�v� various types of Van der Waals interaction be-
tween the molecular beads and the solvent particles. For each
of these interaction potentials, the behavior of the friction
tensor parameters has been calculated and discussed in detail
for high-density as well as for critical solvent.

To further understand the effect of the bead-solvent po-
tential on the center of mass of macromolecules, we have
derived the general expression for the center-of-mass friction
coefficient of the larger N-bead macromolecule. This expres-
sion is given in terms of the dynamic structure factor of the
macromolecule and of the dynamic structure factor of the
solvent.

Finally, by using the Einstein relation, we are able to cal-
culate and compare our results for the center-of-mass diffu-
sion coefficient with molecular dynamic simulation works
�4,5� as well as with the phenomenological data. Good agree-
ment with MDS data is found for all N and, in particular, for
large chains. We therefore believe that this method can be
used also to compute other statical and dynamical properties
of the macromolecules and the solvents with different prop-
erties: neutral chain, charge chain, etc.

FIG. 5. �Color online� Center-of-mass diffusion coefficient DN
�cm�

as function of N, the number of beads in the macromolecule. The
results from this work for “truncated” Lennard-Jones potential �42�
�triangles� are compared with the MDS data from Ref. �4� �squares�
and Ref. �5� �circles� as well as with the theoretical data from the
Rouse model �solid line� and from the Zimm model with “preaver-
aging” �dots line� and “fluctuating” hydrodynamic interactions
�BDS data� from Ref. �7� �triangles + dots line�. See text for further
discussion.
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APPENDIX: FRICTION TENSOR
IN POLAR COORDINATES.

To find a simple parametrization for the friction tensors of
the N-bead �chain� macromolecule, which is immersed into a
solution, let us start from the expression �8� for the momenta
averaged friction tensor.

For a spherical-symmetric �bead-solvent� interaction, it
was shown that the momenta averaged tensor components of
the macromolecule can be expressed in terms of the Fourier
transform of the bead-solvent potential W�k�, the �so-called�
dynamic structure factor g�k ,�� of the solvent and the corre-
lation function of the momenta of the beads C�k ,�� as

�̂�ab� = n0� dk

�2��3��
0

�

d� k � kW�k�2eik·Rae−ik·Rbr�k,��� ,

�A1�

for a ,b=1, . . . ,N. Here we introduce the function r�k ,��
=C�k ,��g�k ,��. Apparently, the tensor �A1� is symmetric
and of rank 2 and, thus, may have six independent compo-
nents. Since, in addition, these components only depend on
the position of the two beads, they can always be param-
etrized in terms of just two parameters �10,11,22� and written
in the form

�̂�ab� = A�	ab�I + B�	ab�q�ab�
� q�ab� �A2�

where 	ab= �Ra−Rb� denotes the distance of the two beads
and q�ab� the unit vector which points from bead b to bead a.
We can evaluate the functions A�	ab� and B�	ab� by taking

�i� the trace of the tensor �̂��
�ab� from Eq. �A1�

Tr��̂�ab�� 	 3A�	ab� + B�	ab�

= n0� dk

�2��3��
0

�

d� k2W�k�2eik·Rae−ik·Rbr�k,��� ,

�A3�

and �ii� by multiplying both sides of Eqs. �A1� and �A2� with
q�

�ab�q�
�ab�, along with a summation over � and �,

�
�,�=1

3

��̂��
�ab��q�

�ab�q�
�ab�

	 A�	ab� + B�	ab�

= n0� dk

�2��3��
0

�

d��kq�2W�k�2eik·Rae−ik·Rbr�k,��� .

�A4�

Using polar coordinates for the representation of the wave
vector k= �k ,�k ,�k� and by carrying out the integration over
the angles �k and �k explicitly, the two Eqs. �A3� and �A4�
then become

3A�	ab� + B�	ab� =
2n0

�2��2�
0

�

dk k4W�k�2


��
0

�

d� r�k,��j0�k	ab�� �A5�

and

A�	ab� + B�	ab� =
2n0

�2��2�
0

�

dk k4W�k�2��
0

�

d� r�k,��


 � j0�k	ab� −
2

�k	ab�
j1�k	ab��� ,

�A6�

where

j0�x� =
sin x

x
, j1�x� =

sin x

x
− cos x

are the two lowest spherical Bessel functions.
We can solve the system of two equations �A5� and �A6�

and finally obtain an explicit expression for the friction ten-
sor components A�	ab� and B�	ab� as function of the dis-
tance between the two beads

A�	ab� =
2n0

�2��2�
0

�

dk k4W�k�2��
0

�

d� r�k,��
j1�k	ab�
�k	ab� �

�A7�

B�	ab� =
2n0

�2��2�
0

�

dk k4W�k�2��
0

�

d� r�k,��� j0�k	ab�

−
3

�k	ab�
j1�k	ab��� �A8�

given as integrals over the modulus k of the wave vector. By
using now the explicit for the function r�k ,��, we can obtain
the expressions �11� and �12� for the friction parameters. As
mentioned before, it is this representation of the friction ten-
sor which has been used above in Sec. II to analyze the
effects of the bead-solvent potential on the internal properties
of the macromolecule and to find further insight into the
dynamics of macromolecules.
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